Trialgebras and families of polytopes
نویسنده
چکیده
We show that the family of standard simplices and the family of Stasheff polytopes are dual to each other in the following sense. The chain modules of the standard simplices, resp. the Stasheff polytopes, assemble to give an operad. We show that these operads are dual of each other in the operadic sense. The main result of this paper is to show that they are both Koszul operads. This theorem appears as a refinement of the functional equation which relates the generating series of the standard simplices to the generating series of the Stasheff polytopes. The two operads give rise to new types of algebras with 3 generating operations, 11 relations, respectively 7 relations, that we call associative trialgebras and dendriform trialgebras respectively. Similarly, the family of cubes gives rise to an operad which happens to be self-dual for Koszul duality. Introduction. We introduce a new type of associative algebras characterized by the fact that the associative product ∗ is the sum of three binary operations : x ∗ y := x≺ y + x y + x · y , MSC 2000: 05C05, 17A50, 17D99,18D50, 18G35, 18G60.
منابع مشابه
Linear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملA special place of Boolean quadratic polytopes among other combinatorial polytopes
We consider several families of combinatorial polytopes associated with the following NP-complete problems: maximum cut, Boolean quadratic programming, quadratic linear ordering, quadratic assignment, set partition, set packing, stable set, 3-assignment. For comparing two families of polytopes we use the following method. We say that a family P is affinely reduced to a family Q if for every pol...
متن کاملHypercube Related Polytopes
Body centered structures are used as seeds for a variety of structures of rank 3 and higher. Propellane based structures are introduced and their design and topological properties are detailed.
متن کاملOrder-Chain Polytopes
Given two families X and Y of integral polytopes with nice combinatorial and algebraic properties, a natural way to generate new class of polytopes is to take the intersection P = P1 ∩ P2, where P1 ∈ X, P2 ∈ Y . Two basic questions then arise: 1) when P is integral and 2) whether P inherits the “old type” from P1,P2 or has a “new type”, that is, whether P is unimodularly equivalent to some poly...
متن کاملFacets of the Weak Order Polytope Derived from the Induced Partition Projection
The weak order polytopes are studied in Gurgel and Wakabayashi (1997), Gurgel and Wakabayashi (1996), and Fiorini and Fishburn (1999). We make use of their natural, aane projection onto the partition polytopes to determine several new families of facets for them. It turns out that not all facets of partition polytopes are lifted into facets of weak order polytopes. We settle the cases of all fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005